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This paper presents two linear stability analyses for an electrically conducting liquid
contained in a vertical cylinder with a thermally insulated vertical wall and with
isothermal top and bottom walls. There is a steady uniform vertical magnetic field.
The first linear stability analysis involves a hybrid approach which combines an
analytical solution for the Hartmann layers adjacent to the top and bottom walls
with a numerical solution for the rest of the liquid domain. The second linear stability
analysis involves an asymptotic solution for large values of the Hartmann number.
Numerically accurate predictions of the critical Rayleigh number can be obtained for
Hartmann numbers from zero to infinity with the two solutions presented here and
a previous numerical solution which gives accurate results for small values of the
Hartmann number.

1. Introduction
During the growth of semiconductor crystals from a body of heated liquid, hy-

drodynamic instabilities often lead to non-axisymmetric flows, and the associated
non-axisymmetric mass transfer produces non-uniform distributions of additives in
the crystals. Since molten semiconductors are good electrical conductors, a magnetic
field can be applied during crystal growth to stabilize the liquid motion and to pro-
duce better crystals. The extensive use of magnetic stabilization in crystal growth has
motivated a number of recent studies of the linear stability of buoyant and ther-
mocapillary convection with uniform steady magnetic fields. In all of these studies,
numerically accurate or grid-independent results could only be obtained for small
values of the Hartmann number, Ha = BR(σ/µ)1/2, where B is the magnetic flux
density of the applied magnetic field and R is the radius of the liquid domain, while
σ and µ are the electrical conductivity and dynamic viscosity of the liquid. For most
crystal-growth processes with magnetic stabilization, the values of Ha are at least an
order of magnitude larger than the largest values for numerically accurate results in
these recent studies. Here we present methods which give numerically accurate results
for values of Ha from zero to infinity.

Prange et al. (1999) presented a linear stability analysis for the thermocapillary
convection in a cylindrical liquid bridge between two isothermal circular disks at
different temperatures and with a steady uniform axial magnetic field. For a Prandtl
number of 0.02 and an axial length equal to R, they presented a thorough docu-
mentation of the number of grid points in the radial and axial directions needed to
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achieve grid-independent predictions of the critical Reynolds number. For Ha = 10
and Ha = 15, numerical accuracy was achieved with a 30 × 80 grid (radial× axial)
and a 35 × 100 grid, respectively. For Ha = 20, they could not obtain accurate
results even with a 40× 120 grid. They stated that finer grids were not possible with
their computational resources, and they only presented stability results for Ha 6 15.
The numerical resolution problems were concentrated in the eigenvalue problem for
the small perturbation variables. They presented accurate numerical results for the
steady axisymmetric base flow for Ha 6 200. The instability of the steady, axisym-
metric thermocapillary convection treated by Prange et al. (1999) is fundamentally
different from the Rayleigh–Bénard instability treated here, but we mention their
work in order to illustrate that different types of linear stability analyses are limited
to small values of Ha because of numerical resolution problems.

Gelfgat & Bar-Yoseph (2001) considered small, planar perturbations to the steady,
planar buoyant convection in a rectangle with thermally insulated top and bottom
walls and with isothermal endwalls at different temperatures. They included a steady
uniform magnetic field whose direction could be varied between vertical and hori-
zontal. They stated: ‘A convergence study involving different values of the Hartmann
number and different orientations of the magnetic field shows that accurate modeling
of the electromagnetic effects requires better numerical resolution than one which
suffices for different cases of pure buoyancy convection’. They indicate that more
resolution is needed because the Hartmann layers become thin for rather small values
of Ha, but still play an important role in the instability. They only presented results
for Ha 6 20, where their Ha is based on the height of the rectangle.

Touihri, Ben Hadid & Henry (1999b) presented a linear stability analysis for the
problem treated here, namely a vertical circular cylinder with a thermally insulated
vertical wall, with isothermal top and bottom walls at different temperatures and with
a steady uniform axial magnetic field. They only presented results for Ha 6 15. They
based their Hartmann and Rayleigh numbers on the diameter of the cylinder, while
we use the radius R, so we will convert their values to our definitions throughout this
paper. While they did not discuss any numerical limitations, their contours of the
radial velocity in the critical mode reveal that the Hartmann layers adjacent to the
top and bottom walls are already quite thin for Ha = 15.

Dold & Benz (1995) presented experimental temperature measurements for liquid
gallium contained in a vertical cylinder with a thermally insulated vertical wall, with
isothermal top and bottom walls at different temperatures, and with an axial length
which was twice the diameter. For a Rayleigh number of 9844, the temperature at
a fixed point in the liquid fluctuated chaotically without a magnetic field and was
constant with a magnetic field for which Ha = 212. The present paper concerns
the primary instability with transition from a stagnant fluid to a steady flow. The
experimental measurements of Dold & Benz (1995) are concerned with a secondary
instability with transition to unsteady flow. Their results show that for Ha = 212, the
critical Rayleigh number for the secondary instability is greater than 9844. However,
their results do not provide any information about the primary instability since their
constant temperature at a fixed point would occur for either a stagnant fluid or a
steady flow.

Many researchers have studied the Rayleigh–Bénard instability in a vertical cylinder
without a magnetic field. Three numerical treatments of the primary and secondary
instabilities without a magnetic field were presented by Neumann (1990), Wanschura,
Kuhlmann & Rath (1996) and Touihri, Ben Hadid & Henry (1999a). Many researchers
have also treated the effects of a steady uniform magnetic field on three-dimensional
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instabilities in buoyant convection in other geometries. For example, Hurle, Jakeman
& Johnson (1974) presented an experimental study of the instabilities in a horizontal
rectangular prism with isothermal ends at different temperatures, with the other four
walls thermally insulated and with a uniform horizontal magnetic field which was
parallel to the isothermal endwalls. Juel et al. (1999) presented numerical solutions for
the same problem. Ben Hadid, Henry & Touihri (1997) presented numerical solutions
for the instability in a horizontal circular cylinder with a thermally insulated cylindrical
wall, with isothermal endwalls at different temperatures and with a steady uniform
vertical magnetic field.

For the thermocapillary instability or for the buoyant instability with an essentially
horizontal base-state temperature gradient, there are numerical accuracy issues for
both the base state and the small perturbation. The results of Prange et al. (1999)
for the thermocapillary instability indicate that the limitation to small values of Ha
arises from resolution problems for the small perturbation and not for the base flow.
Since the base state for the Rayleigh–Bénard problem consists of a stagnant liquid
and a linear temperature variation, the only numerical accuracy issues concern the
perturbation.

The present paper represents an extension of the work of Touihri et al. (1999b) who
treated the Rayleigh–Bénard instability in a vertical cylinder with a vertical magnetic
field and with Ha 6 15. Our paper presents linear stability analyses for larger values
of Ha. Our first linear stability analysis involves a hybrid approach which combines
(i) an analytical solution for the Hartmann layers with O(Ha−1) thickness adjacent
to the top and bottom walls, and (ii) a numerical solution for the rest of the liquid
domain. By eliminating the need to resolve the thin Hartmann layers numerically,
the hybrid solution gives grid-independent results with reasonable computational
resources up to roughly Ha = 500. We have extended the fully numerical approach of
Touihri et al. (1999b) to Ha = 40–80, depending on the aspect ratio of the cylinder,
thus demonstrating that Ha = 15 did not represent any limit of accuracy for their
fully numerical solution. There is excellent agreement between the predictions of the
hybrid approach and of the fully numerical approach for a range of values of Ha
for each of the two aspect ratios considered here. Our second linear stability analysis
involves an asymptotic solution for Ha� 1. This analysis shows that the critical
Rayleigh number varies as Ha3/2 for Ha� 1. There is excellent agreement between
the hybrid and asymptotic solutions for a range of values of Ha. With our hybrid and
asymptotic solutions and with the fully numerical solution of Touihri et al. (1999b),
accurate results can be obtained for values of Ha from zero to infinity.

2. Problem formulation
In addition to the applied magnetic field, there is an induced magnetic field produced

by the electric currents in the liquid. The characteristic ratio of the induced to applied
magnetic fields is the magnetic Reynolds number, Rm = µpσUcR, where µp is the
magnetic permeability of the liquid and Uc is a characteristic velocity for the liquid
motion. Here the liquid is stagnant in the base state and the linear stability analysis
involves a small perturbation, so it is difficult to define a suitable Uc. However, for all
laminar flows in crystal growth processes, Rm is so small that the induced magnetic
field can be neglected. Baumgartl & Müller (1992) showed that the time-dependent
induced magnetic field may be important for the turbulent flows in some very large
crystal-growth processes.

For the cylindrical coordinates r, θ, z, the z-axis lies along the vertical centreline
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of the cylinder and the origin lies at the centre of the cylinder, and r and z are
normalized by R. We assume that all walls are electrical insulators. The dimensionless
boundary conditions are

v = 0, jr = 0,
∂T

∂r
= 0 at r = 1, (1a–c)

v = 0, jz = 0, T = ∓ 1
2

at z = ±b, (1d–f )

where v is the liquid velocity normalized by ν/R, j is the electric current density
normalized by σνB/R, and T is the deviation of the temperature from the average
temperature, normalized by (∆T ), which is the temperature difference between the
isothermal top and bottom walls. Here 2b is the dimensionless height of the cylinder
and ν is the kinematic viscosity of the liquid. With the Boussinesq approximation and
with the neglect of the induced magnetic field, the dimensionless governing equations
are

∂v

∂t
+ (v · ∇)v = −∇p+

Ra

Pr
T ẑ +Ha2(j × ẑ) + ∇2v, (2a)

∇ · v = 0, j = −∇φ+ v × ẑ, ∇ · j = 0, (2b–d )

∂T

∂t
+ v · ∇T =

1

Pr
∇2T , (2e)

where t is time normalized by R2/ν, p is the deviation of the pressure from the
hydrostatic pressure for a uniform density ρ, normalized by ρν2/R2, and φ is the
electric potential function normalized by νB. Here

Ra =
gβ(∆T )R3

νκ
, P r =

ν

κ
(3a, b)

are the Rayleigh and Prandtl numbers, while ẑ is a unit vector in the z-direction,
g = 9.81 m s−2, β is the volumetric expansion coefficient of the liquid, and κ is the
thermal diffusivity of the liquid.

For the linear stability analysis, we introduce

T = − z

2b
+ Pr ε Re[exp(λt+ imθ)T1(r, z)] (4a)

for the temperature, we introduce the form

vr = ε Re[exp(λt+ imθ)vr1(r, z)] (4b)

for vr , vz , p and jθ , and we introduce the form

vθ = ε Re[exp(λt+ imθ)ivθ1(r, z)] (4c)

for vθ , φ, jr and jz . Here λ = λr + iλi is the possibly complex eigenvalue, m is the real
integer azimuthal wavenumber, and the modal functions with the subscript 1 may be
complex. The i is included in (4c) so that all modal functions are real if λ is real, and
Pr is included in (4a) so that Pr drops out of the problem if λ for the critical mode
is zero. Neglecting O(ε2) terms, equations (2) become

λvr1 = −∂p1

∂r
+Ha2jθ1 + ∇2vr1 − vr1

r2
+

2m

r2
vθ1, (5a)

λvθ1 = −m
r
p1 −Ha2jr1 + ∇2vθ1 − vθ1

r2
+

2m

r2
vr1, (5b)
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λvz1 = −∂p1

∂z
+ RaT1 + ∇2vz1, (5c)

∂vr1

∂r
+
vr1

r
− m

r
vθ1 +

∂vz1

∂z
= 0, (5d)

jr1 = −∂φ1

∂r
+ vθ1, jθ1 =

m

r
φ1 − vr1, (5e, f )

jz1 = −∂φ1

∂z
,

∂jr1

∂r
+
jr1

r
+
m

r
jθ1 +

∂jz1

∂z
= 0, (5g, h)

λPrT1 − vz1

2b
= ∇2T1, (5i )

where now

∇2 =
∂2

∂r2
+

1

r

∂

∂r
− m2

r2
+

∂2

∂z2
. (5j )

With the addition of a subscript 1 to each dependent variable, the homogeneous
boundary conditions (1a)–(1e) still apply, while (1f ) is replaced by

T1 = 0 at z = ±b. (6)

First we describe our duplication of the fully numerical solution of Touihri et al.
(1999b). Equations (5d ) and (5b) were used to eliminate vθ1 and p1, respectively. After
these substitutions, (5a) includes the terms Ha2(∂jr1/∂r + jr1/r + mjθ1/r) which are
replaced by −Ha2∂jz1/∂z because of (5h). Finally (5e)–(5g) were used to eliminate
jr1, jθ1 and jz1, leaving four modal functions, vr1, vz1, T1 and φ1. We used a Chebyshev
spectral collocation method to reduce the homogeneous differential equations and
boundary conditions to a matrix eigenvalue problem, which was solved using the rgg
subroutine in the EISPACK library. In order to ensure that the Chebyshev polynomial
representation of each modal function matched the correct Taylor series expansions
in r, we used the form

r(m−1)
∑
L

∑
N

ALNT2L(r)TN(z/b) (7a)

for vr1 and the form

rm
∑
L

∑
N

BLNT2L(r)TN(z/b) (7b)

for vz1, T1 and θ1, where Tk(x) = cos[k arccos(x)] are the Chebyshev polynomials.
Our pseudospectral method is quite different from the isoparametric spectral element
method used by Touihri et al. (1999b), but the results are the same for Ha < 15 and
for both aspect ratios considered here. For each value of Ha and for a range of
integer values for m, we increased Ra until one eigenvalue had λr = 0 for each value
of m. The critical Rayleigh number Racr is the minimum of the values of Ra for
λr = 0 and for all values of m.

Next we present our hybrid approach which combines an analytical solution for
the Hartmann layers which have an O(Ha−1) thickness and which lie adjacent to the
top and bottom walls at z = ±b, and a numerical solution for the rest of the liquid
domain. As the value of Ha is increased, Hartmann layers develop near the walls
which are perpendicular to the applied magnetic field. Hartmann layers have a simple,
local, exponential structure, which satisfies the boundary conditions (1d ) and (1e) at
z = ±b, and which matches any values of vr1 and vθ1 in the rest of the domain, provided
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the solution in the rest of the domain satisfies the Hartmann conditions (Moreau
1990). The Hartmann conditions come from matching the analytical solutions in the
Hartmann layers and the variables in the rest of the domain. Many researchers have
presented solutions for Hartmann layers and for Hartmann conditions, and we use
the Hartmann conditions presented by Hunt & Ludford (1968),

vz1 ±Ha−1

[
∂vr1

∂r
+
vr1

r
− m

r
vθ1

]
= 0 at z = ±b, (8a)

jz1 ±Ha−1

[
∂vθ1

∂r
+
vθ1

r
− m

r
vr1

]
= 0 at z = ±b. (8b)

For the domain excluding the Hartmann layers, there are no boundary conditions
on vr1 and vθ1 at z = ±b, but if these velocities involve a divergence in the plane at
z = ±b, then conservation of mass inside each Hartmann layer gives an O(Ha−1)vz1
flow into or out of the Hartmann layer, often called Hartmann pumping; and if these
velocities involve a swirl in the plane at z = ±b, the conservation of electric current
inside each Hartmann layer gives an O(Ha−1)jz1 flow into or out of the Hartmann
layer, often called the Hartmann current. The development of the Hartmann layers
as Ha is increased implies that the viscous diffusion of momentum in the z-direction
is negligible outside the Hartmann layers. Therefore the two important features of the
hybrid approach are: (i) the terms ∂2v1/∂z

2 in ∇2v1 in (5a), (5b) and (5c) are neglected,
and (ii) the Hartmann conditions (8a) and (8b) are applied at z = ±b instead of the
boundary conditions (1d ) and (1e). Since we drop the no-slip conditions vr1 = vθ1 = 0
at z = ±b, we must drop the viscous terms ∂2v1/∂z

2 in ∇2v1 for a well-posed problem.
Since the region treated numerically includes both the inviscid core and the boundary
layer at r = 1, the radial derivatives in ∇2v1 must be kept. The viscous terms involving
m from the azimuthal derivatives in ∇2v1 are kept because it is not a priori obvious that
m does not become large for Ha � 1. The numerical solution makes no distinction
between the core and the boundary layer at r = 1, so that it is important that this
layer is numerically resolved. With the grid used for all of our hybrid-solution results,
there are collocation points at r = 0.99745, 0.98982, 0.97715, 0.95949 and 0.93695, so
that the boundary layer at r = 1 is well resolved for the values of Ha considered
here. The jump in T1 across each Hartmann layer is at most O(Ha−3), so that the
boundary conditions (6) are still applied. The rest of the numerical solution for the
domain excluding the Hartmann layers is identical to the fully numerical solution.

Finally we present our asymptotic solutions for Ha� 1. It is difficult to determine
the dimensions of the subregions for Ha� 1 from (5) because there are nine variables.
It is easy to combine (5) into a few higher-order equations governing fewer variables.
The key equations have the same form, λ∇2φ1 = ∇4φ1 −Ha2∂2φ1/∂z

2, plus lower-
order coupling terms with the other variables. This is an equation for the axial
vorticity, which is given by ∇2φ1. From this and similar equations, it is clear that
the boundary layers at z = ±b have an O(Ha−1) thickness and the boundary layer
at r = 1 has an O(Ha−1/2) thickness. In other buoyant-convection problems with
strong magnetic fields, different boundary-layer thicknesses arise from the nonlinear
inertial terms or from different relationships between the geometry of the boundary,
the magnetic-field direction and the gravitational direction or from different electrical
conductivities of the walls. However, the subregions shown in figure 1 are the only
ones for the present problem. The subregions are the core region (c), the primary
Hartmann layers (h) which have an O(Ha−1) thickness and which lie between the
core and the top and bottom at z = ±b, the parallel layer (p) which has an O(Ha−1/2)



Instability in a vertical cylinder with a vertical magnetic field 195

z = b

Ha–1 h H

c p

Ha–1/2
z

r

r = 1

Ha–1 h H

z = –b

Figure 1. Subregions of the liquid domain for Ha� 1: c = core, h = primary Hartmann layer,
p = parallel layer and H = secondary Hartmann layer.

thickness and which lies between the core and the vertical wall at r = 1, and the
secondary Hartmann layers (H) which have ∆r = O(Ha−1/2), ∆z = O(Ha−1) and which
lie between the parallel layer and the top and bottom at z = ±b. For both the fully
numerical solution and the hybrid solution, all eigenvalues λ are real, as expected for
the Rayleigh–Bénard problem (Touihri et al. 1999a, b). Thus the instability always
leads to a steady flow which is either axisymmetric (m = 0) or non-axisymmetric
(m > 1), and λ = 0 for the critical mode. For the asymptotic solution, we set λ = 0
with no loss of generality. First we consider the relationships between variables in the
core and parallel layer without specifying orders of magnitude.

In the core, the viscous terms in equations (5a)–(5c) are O(Ha−2) smaller than the
other terms and are neglected, so that (5a), (5b), (5c), (5e) and (5f ) give

jr1 = −Ha−2m

r
p1, jθ1 = Ha−2 ∂p1

∂r
,

∂p1

∂z
= RaT1, (9a–c)

vr1 =
m

r
φ1 −Ha−2 ∂p1

∂r
, vθ1 =

∂φ1

∂r
−Ha−2m

r
p1. (9d, e)

Substitution of (9a), (9b) and (5g) into (5h) gives

∂2φ1

∂z2
= 0, (10)

while substitution of (9d ), (9e) and (5g) into the Hartmann condition (8b) gives

∂φ1

∂z
= ±Ha−1

[
∂2φ1

∂r2
+

1

r

∂φ1

∂r
− m2

r2
φ1

]
at z = ±b. (11)
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The solution of (10) and (11) is φ1 = 0, so that φ1 is at most O(Ha−2v1) in the core.
Substitution of (9c)–(9e) and (5i ) into (5d ) gives

∂vz1

∂z
= −RaHa−2

[
∂T1

∂z
+

1

2b

∫
vz1 dz

]
. (12)

Equations (5i ) and (12) indicate that if Ra = O(Ha2), then vz1 in the core and the
base-state axial temperature gradient produce a perturbation temperature T1 which
leads to a buoyancy force to produce this vz1 in the core.

For the parallel layer, we introduce the stretched coordinate ξ = Ha1/2(r − 1).
Equation (5d ) indicates that vr1 is O(Ha−1/2) smaller than vθ1 and vz1, while (5h)
indicates that jr1 is O(Ha−1/2) smaller than jθ1 and jz1. Thus the leading-order terms
in equations (5) are

jθ1 = Ha−3/2 ∂p1

∂ξ
, jr1 = −Ha−2mp1 +Ha−1 ∂

2vθ1

∂ξ2
, (13a, b)

∂p1

∂z
= RaT1 +Ha

∂2vz1

∂ξ2
, Ha1/2 ∂vr1

∂ξ
− mvθ1 +

∂vz1

∂z
= 0, (13c, d )

vθ1 = Ha1/2 ∂φ1

∂ξ
, vr1 = mφ1 − jθ1, jz1 = −∂φ1

∂z
, (13e–g)

Ha1/2 ∂jr1

∂ξ
+ mjθ1 +

∂jz1

∂z
= 0, −vz1

2b
= Ha

∂2T1

∂ξ2
+Ha1/2 ∂T1

∂ξ
. (13h, i )

Substitution of (13a), (13b), (13e) and (13g) into (13h) gives

∂4φ1

∂ξ4
− ∂2φ1

∂z2
= 0. (14)

Substitution of (13a), (13e) and (13f ) into (13d ) gives

Ha−1 ∂
2p1

∂ξ2
=
∂vz1

∂z
. (15)

The boundary conditions (1a)–(1c) become

mφ1 −Ha−3/2 ∂p1

∂ξ
=
∂φ1

∂ξ
= vz1 = 0 at ξ = 0, (16a–c)

∂3φ1

∂ξ3
−Ha−3/2mp1 =

∂T1

∂ξ
= 0 at ξ = 0. (16d, e)

Equations (13c) and (15) show that the buoyancy force produces a velocity vz1 inside
the parallel layer which is O(RaHa−1T1). Thus (13i ) and (16e) show that

lim
ξ→−∞

∂T1

∂ξ
= O(RaHa−2T1). (17)

This temperature gradient enters the 2-inner, 2-outer matching of T1 in the core
and T1 in the parallel layer, which implies that O(Ha−1/2T1) = O(RaHa−2T1) or
Ra = O(Ha3/2).

Chandrasekhar (1961) treated the Rayleigh–Bénard instability in a liquid layer
between two infinite horizontal isothermal walls with a uniform vertical magnetic
field. He showed that Racr = O(Ha2), which agrees with our conclusion from (12)
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that Racr = O(Ha2) for a self-sustained instability in the core. The lower value of
Racr = O(Ha3/2) arises from the perturbation velocity and the associated convective
heat transfer inside the parallel layer. In the core or in an infinite horizontal layer,
any horizontal component of vorticity drives a circulation of electric current, and the
ratio of the joulean dissipation in the current circulation to the viscous dissipation
in the vorticity is O(Ha2). Inside the parallel layer, the electrically insulating vertical
wall blocks radial electric currents, so that a radial component of vorticity inside the
parallel layer leads to a circulation of electric current whose joulean dissipation is only
O(Ha3/2) times the viscous dissipation in the vorticity. This suggests three remarks
about other situations. First, for the Rayleigh–Bénard instability in a cylinder with an
electrically conducting vertical wall, radial electric currents are not blocked, so that
Racr = O(Ha2) for Ha� 1. Second, if only axisymmetric perturbations with m = 0 are
considered, there is no radial vorticity, and again Racr = O(Ha2) for Ha� 1. Third,
in experimental studies of Rayleigh–Bénard instabilities in vertical cylinders with
an electrically insulating vertical wall and with a strong vertical magnetic field, the
absence of a measurable temperature perturbation in the central region, particularly
near the centreline, may not indicate the absence of the instability. Temperature
perturbations arise from the vertical velocity inside the parallel layer and decay as
they diffuse radially inward into the core. As Ha is increased, the value of m for the
critical mode increases, so that the form of the perturbation temperature (7b) indicates
that the radial decay rate increases. Azimuthal voltage variations at the vertical wall
would probably be a more sensitive indicator of this instability for strong magnetic
fields, since they arise from blocking the radial current.

We introduce Ra = γHa3/2, where γ is an O(1) parameter, i.e. independent of Ha
for Ha� 1. To scale the perturbation variables in all four subregions, we specify that
vz1 = O(1) inside the parallel layer. The linear perturbation problem, (5), (1a)–(1e) and
(6), admits two independent families of solutions: (i) symmetric modes in which vz1,
T1 and jz1 are even functions of z, while vr1, vθ1, p1, jr1, jθ1 and φ1 are odd functions
of z, and (ii) antisymmetric modes in which vz1, T1 and jz1 are odd functions of z,
while vr1, vθ1, p1, jr1, jθ1 and φ1 are even functions of z. For every case we have
treated with the fully numerical, hybrid or asymptotic approach, the critical mode
was a symmetric mode. This agrees with the results of Touihri et al. (1999b) and it
makes physical sense. For simplicity, we only present the equations for the symmetric
modes in the asymptotic solution.

In the core, φ1 and jz1 are O(Ha−3),

T1 = Ha−1/2T1c(r, z) +Ha−1T̂ 1c(r, z), (18a)

p1 = Hap1c(r, z), p1c = γ

∫ z

0

T1c(r, z
∗) dz∗, (18b, c)

vr1 = −jθ1 = −Ha−1 ∂p1c

∂r
, vz1 = −γHa−1T1c, (18d, e)

vθ1 = jr1 = −Ha−1m

r
p1c, (18f )

where T1c(r, z) is an even function of z which is governed by

∂2T1c

∂r2
+

1

r

∂T1c

∂r
− m2

r2
T1c +

∂2T1c

∂z2
= 0, (19)

and the boundary condition, T1c = 0, at z = b. The separation-of-variables solution
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is

T1c =

∞∑
N=0

DNIm(αNr) cos(αNz), αN =
(
N + 1

2

) π
b
, (20a, b)

where Im is the modified Bessel function of the first kind and mth order and the
coefficients DN will be determined by matching the core and parallel layer.

In the parallel layer,

T1 = Ha−1/2T1c(1, z) +Ha−1T1p(ξ, z), vz1 = vz1p(ξ, z), (21a, b)

p1 = Ha

[
γ

∫ z

0

T1c(1, z
∗) dz∗ + p1p(ξ, z)

]
, φ1 = Ha−1/2φ1p(ξ, z), (21c, d )

vr1 = Ha−1/2

[
mφ1p − ∂p1p

∂ξ

]
, vθ1 =

∂φ1p

∂ξ
, (21e, f )

jr1 = Ha−1

[
∂3φ1p

∂ξ3
− mp1p − mγ

∫ z

0

T1c(1, z
∗) dz∗

]
, (21g)

jθ1 = Ha−1/2 ∂p1p

∂ξ
, jz1 = −Ha−1/2 ∂φ1p

∂z
. (21h, i )

The equations governing vz1p, p1p, φ1p and T1p are

∂2p1p

∂ξ2
=
∂vz1p

∂z
,

∂p1p

∂z
=
∂2vz1p

∂ξ2
, (22a, b)

∂4φ1p

∂ξ4
=
∂2φ1p

∂z2
,

∂2T1p

∂ξ2
= −vz1p

2b
. (22c, d )

The boundary conditions (16) become

mφ1p − ∂p1p

∂ξ
=
∂φ1p

∂ξ
= vz1p =

∂T1p

∂ξ
= 0 at ξ = 0, (23a–d )

∂3φ1p

∂ξ3
− mp1p = mγ

∫ z

0

T1c(1, z
∗) dz∗ at ξ = 0. (23e)

The Hartmann conditions (8) for the secondary Hartmann layer become

vz1p =
∂φ1p

∂z
− ∂2φ1p

∂ξ2
= 0 at z = b, (24a, b)

so that the Hartmann current is important, but the Hartmann pumping is not.
Matching the parallel-layer and core solutions gives

vz1p → 0, p1p → 0, φ1p → 0 as ξ → −∞, (25a–c)

T1p → ξ
∂T1c

∂r
(1, z) + T̂ 1c(1, z) as ξ → −∞. (25d )

The matching of the O(Ha−1/2) temperatures in the core and parallel layer has already
been used in (21a), while (25d ) comes from matching the O(Ha−1) temperatures in
the core and parallel layer. In this 2-inner, 2-outer matching, r in the core temperature
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(18a) is replaced by (1 + Ha−1/2ξ), and a Taylor series is used to obtain the proper
asymptotic form with powers of Ha times functions which are independent of Ha.

The separation-of-variables solution for equations (22a) and (22b), with the bound-
ary conditions (23c), (24a), (25a) and (25b), is

vz1p =

∞∑
N=0

AN exp(τNξ) sin(τNξ) cos(αNz), (26a)

p1p =

∞∑
N=0

AN exp(τNξ) cos(τNξ) sin(αNz), (26b)

where τN = (αN/2)1/2. The integral of (22d ) with (23d ) and (25d ) gives

∂T1c

∂r
(1, z) =

1

2b

∫ 0

−∞
vz1p(ξ, z) dξ, (27)

which reflects the fact that an upward or downward jet inside the parallel layer rejects
heat into the core or absorbs heat from the core, respectively. Substitution of (20a)
and (26a) into (27) determines DN in terms of AN ,

DN = QNAN, (28a)

QN = (4bτN)−1
[
mIm(αN)− αNI(m−1)(αN)

]−1
. (28b)

There is no separation-of-variables solution for φ1p because of the boundary
condition (24b). Walker, Ludford & Hunt (1972) superimposed Greens functions for
the operators (∂/∂z ± ∂2/∂ξ2) in order to construct a solution of (22c) with the
boundary conditions (23b), (24b) and (25c). Here their solution becomes

φ1p =

∫ b

−b
F(z∗)

{
ξ

2
erf

[
ξ

2
|z − z∗|−1/2

]
+ π−1/2|z − z∗|1/2 exp

[
−ξ

2

4
|z − z∗|−1

]}
dz∗,

(29a)

F(z) =
∂3φ1p

∂ξ3
(0, z), (29b)

where F is an odd function of z. Substitution of (20a), (26b) and (28) into (23e) gives
F(z) in terms of AN ,

F = m

∞∑
N=0

AN

[
1 +

QN

αN
γIm(αN)

]
sin(αNz). (30)

Finally the substitution of (26b), (29) and (30) into the last boundary condition (23a)
gives a set of homogeneous linear algebraic equations for AN ,

2b3/2m2π−1/2

∞∑
N=0

[
1 +

QN

αN
γIm(αN)

]
SKNAN − τKAK = 0, (31)

for K = 0 to ∞, where

SKN =

∫ 1

0

∫ 1

0

sin[(K + 0.5)πZ] sin[(N + 0.5)πZ∗][|Z − Z∗|1/2 − (Z + Z ∗)1/2] dZ∗ dZ.

(32)
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Figure 2. Racr versus Ha for b = 1 and 0 6 Ha 6 70: (i) fully numerical solution and (ii) hybrid
solution. Switch from m = 1 to m = 2 occurs at Ha = 23 and Racr = 3120.

We truncated both K and N at the value NT , and we numerically evaluated the
two integrals in (32) with at least twenty points between adjacent zeros of sin[(NT +
0.5)πZ]. Since we have already set λ = 0, we found the critical value of γ = RaHa−3/2

for each combination of b and m by increasing γ until the determinant of the coefficient
matrix in (31) was zero.

3. Results
We present results for b = 1.0 and b = 0.5. For our fully numerical solution, our

finest grid had 17 Gauss–Lobatto collocation points for 0 6 r 6 1 and 19 Gauss–
Lobatto collocation points for 0 6 z 6 b. For the hybrid solution, our finest grid had
23 points for 0 6 r 6 1 and 15 points for 0 6 z 6 b. The hybrid solution requires
fewer points in the z-direction since numerical resolution of the Hartmann layer at
z = b is not needed, but it requires more points in the r-direction in order to achieve
numerical resolution of the parallel layer at r = 1 for Ha 6 500. The same grids
were used for both the symmetric and antisymmetric modes, and the critical mode
was a symmetric mode for every case considered here. We carried out grid-refinement
studies to ensure that the numerical error in the critical Rayleigh number was less
than 1% for our finest grid for both the fully numerical and hybrid solutions.

For our fully numerical solution, we found that the upper limit on Ha for numerical
accuracy with our finest grid depended on b. In every case, the value of Racr decreased
as the grid was refined. For b = 1, the upper limit was roughly Ha = 40, but we
also treated Ha = 45 where the error in Racr is slightly larger than 1%. The ratio
of the Hartmann layer thickness to the height of the cylinder varies as b−1, so that
better resolution is achieved with a given number of axial collocation points as b is
decreased. For b = 0.5, the upper limit for numerical accuracy was roughly Ha = 75,
but we also treated Ha = 80, where the error was also slightly more than 1%.

For b = 1, the results for Racr from the fully numerical solution are plotted for
0 6 Ha 6 45 and those from the hybrid solution are plotted for 25 6 Ha 6 70 in
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Figure 3. Racr versus Ha for b = 0.5 and 0 6 Ha 6 100: (i) fully numerical solution and (ii) hybrid
solution. Switches from m = 0 to m = 2 occur at Ha = 12 and Racr = 4938, from m = 2 to m = 3
at Ha = 15 and Racr = 6166, and from m = 3 to m = 4 at Ha = 42 and Racr = 21 300.

figure 2. The fully numerical results for 0 6 Ha 6 15 agree very well with the results
in figure 3 of Touihri et al. (1999b), after the change from diameter to radius in the
definitions of Ra and Ha. As Ha is increased, the critical mode switches from m = 1 to
m = 2 at Ha = 23 and Racr = 3120, while m = 2 for the hybrid solution for b = 1 and
for 25 6 Ha 6 500. The difference between the fully numerical and hybrid results for
Racr decreases from 2.6% for Ha = 25 to 1.1% for Ha = 45. The grid-independence
studies showed that any residual numerical error in the fully numerical solution is
an overestimation of Racr . While the hybrid solution has a tiny numerical error for
these small values of Ha, it has an intrinsic O(Ha−1) error. We expect this error to
lead to an underestimation of Racr because the viscous term ∂2v1/∂z

2 is assumed
to be negligible outside the Hartmann layers. With its underestimation of viscous
dissipation, we expect the hybrid solution to predict instability at a lower value of
Racr . For b = 1, we conclude that the hybrid solution gives good results for Ha = 45.
Its accuracy increases as Ha is increased from 45 and its intrinsic O(Ha−1) error
decreases, until its numerical accuracy deteriorates because the parallel layer is not
adequately resolved with our finest grid.

For b = 0.5, the results for Racr from the fully numerical solution are plotted for
0 6 Ha 6 80 and those from the hybrid solution are plotted for 60 6 Ha 6 100 in
figure 3. For b = 0.5 and Ha = 0, the critical mode with m = 0 involves a transition
from a stagnant fluid to an axisymmetric steady convection (Touihri et al. 1999a).
As Ha is increased, m for the critical mode switches from 0 to 2 at Ha = 12 and
Racr = 4938, from 2 to 3 at Ha = 15 and Racr = 6166, and from 3 to 4 at Ha = 42 and
Racr = 21 300, while m = 4 for the hybrid solution for 60 6 Ha 6 500. The difference
between the fully numerical and hybrid results for Racr decreases from 1.8% for
Ha = 60 to 1.2% for Ha = 80.

For the hybrid solution, we found that the upper limit on Ha for numerical
accuracy with our finest grid had a weaker dependence on b than the fully numerical
solution. For b = 1, grid-independence studies indicated that the error in Racr with
our finest grid was less than 1% for Ha 6 500. The thickness of the parallel layer
varies as (b/Ha)1/2, so that it becomes thinner as b is decreased. For b = 0.5, our finest
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Figure 4. Racr versus Ha for b = 1 and 25 6 Ha 6 650: (i) hybrid solution and
(ii) asymptotic solution.

grid gave accurate results for Ha 6 400. For 400 6 Ha 6 500, the hybrid solution
continues to indicate that m = 4 for the critical mode, but the possible numerical
error in Racr is comparable to the small difference between the values of Racr for the
m = 4 and m = 5 modes. The Racr for m = 0 to 3 and m > 6 are all much larger.

For b = 1, the asymptotic solution gives γcr = 23.48183 for m = 2, with significantly
higher values for other values of m. Thus we conclude that m = 2 for the critical mode
for 23 6 Ha 6 ∞. For b = 1, the results for Racr from the hybrid solution are plotted
for 25 6 Ha 6 500 and those from the asymptotic solution with Racr = 23.48183Ha3/2

are plotted for 250 6 Ha 6 650 in figure 4. For 250 6 Ha 6 500, the difference
between the hybrid and asymptotic results is less than 1.4%. Thus we conclude that
the asymptotic solution gives accurate results for Ha > 250. Its accuracy increases
as Ha is increased and its O(Ha−1/2) intrinsic error decreases. Numerical accuracy is
never a problem for the asymptotic solution, so it gives accurate results for any larger
value of Ha.

For b = 0.5, the asymptotic solution gives γcr = 67.748044 for m = 5 and γcr =
68.253627 for m = 4, with much larger values of γcr for m = 0 to 3 and m > 6. For
b = 0.5, the results for Racr from the hybrid solution are plotted for 45 6 Ha 6 500
and those from the asymptotic solution with Racr = 67.748044Ha3/2 are plotted for
400 6 Ha 6 600 in figure 5. For 400 6 Ha 6 500, the difference between the results
of the hybrid solution for m = 4 and the asymptotic solution for m = 5 is less than
0.5%. The asymptotic solution indicates that m = 5 for the critical mode for b = 0.5
and Ha� 1, and this is confirmed by solutions with NT = 100, 200 and 300, but
it also indicates that the m = 4 mode is very close for Ha � 1. The hybrid solution
indicates that the critical mode has m = 4 for Ha 6 500, but the difference between
the values of Racr for the m = 4 and m = 5 modes is comparable to the possible
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Figure 5. Racr versus Ha for b = 0.5 and 45 6 Ha 6 600: (i) hybrid solution and
(ii) asymptotic solution.

numerical error in Racr for Ha > 400. Clearly there is a switch from the m = 4 mode
to the m = 5 mode for some value of Ha > 400, while the value of Ha and Racr is
not defined by the present analysis. Nevertheless this difference appears to be moot
since both solutions indicate that, as Ra is increased for Ha > 400, the m = 4 and
m = 5 modes appear almost simultaneously, while all other modes do not appear
until significantly higher values of Ra.

As noted previously, we expect the hybrid solution to underestimate Racr because it
neglects the axial viscous term outside the Hartmann layers. The asymptotic solution
neglects various viscous terms in all four subregions, but it also neglects convective
heat transfer outside the parallel layer. An underestimation of convective heat transfer
would lead to an overestimation of Racr . It is not clear whether the overestimation
of Racr due to the neglect of convective heat transfer outside the parallel layer
or its underestimation due to the neglect of various viscous terms dominates for
the asymptotic solution, but the underestimation of convective heat transfer in the
asymptotic solution helps explain why the asymptotic values in figures 4 and 5 are
higher than the hybrid ones.

For the hybrid solution for b = 1, Ha = 500, Racr = 258 920 and m = 2, contour
plots of several perturbation variables are presented in figure 6. We normalized the
hybrid solution with vz1 = rm at r = 0.90963 and z = 0. With real modal functions
in (4),

T = −0.5z + Pr ε cos(2θ)T1(r, z), vr = ε cos(2θ)vr1(r, z), (33a, b)

vz = ε cos(2θ)vz1(r, z), vθ = −ε sin(2θ)vθ1(r, z). (33c, d )
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Figure 6. Contour plots for the hybrid solution for b = 1, Ha = 500, Racr = 258 920 and m = 2. (a)
vz1 = −0.02k for k = 0 to 4 and vz1 = 0.3k for k = 1 to 4. (b) vθ1 = −0.005 and −0.01, vθ1 = −0.02k
for k = 1 to 5 and vθ1 = −0.2k for k = 1 to 3. (c) vr1 = −0.005k for k = 1 to 8. (d ) T1 = 0.002k for
k = 0 to 10.

Therefore there is no flow across the planes at θ = 0, ±π/2 and π, and the flow in
the other three quadrants is given by the reflection of the flow in the first quadrant,
0 6 θ 6 π/2.

Positive values of vz1 in figure 6(a) represent upward flow for 0 < θ < π/4 and
downward flow for π/4 < θ < π/2. The negative values of vθ1 in figure 6(b) represent
flow in the positive θ-direction across the plane at θ = π/4. The negative values of vr1
in figure 6(c) represent radially inward flow for 0 < θ < π/4 and radially outward flow
for π/4 < θ < π/2. For all critical modes vz1 is an even function of z, while vr1 and
vθ1 are odd functions of z. For 0 < θ < π/4, there is an upward jet for 0.84 < r < 1
in figure 6(a), and this jet splits into three separate circulations. First, more than 90%
of this upward jet near r = 1 for 0 < θ < π/4 turns to flow in the +θ-direction as the
negative values of vθ1 for 0.8 < r < 1 in figure 6(b). After crossing the θ = π/4 plane,
this flow turns to become more than 90% of the downward flow for 0.84 < r < 1 and
π/4 < θ < π/2. The circuit for this flow is completed in z < 0. This circulation with
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Figure 7. Contour plots of vz1p for the asymptotic solution for b = 1:
vz1p = −0.0002k for k = 0 to 6 and vz1p = 0.05k for k = 1 to 6.

more than 90% of the total flow is everywhere nearly tangent to the vertical wall,
blocking the radial electric current which would be driven by the interaction of the
azimuthal velocity and the axial magnetic field. This is the radial vorticity inside the
parallel layer which has relatively small joulean dissipation. Second, roughly 6% of
the upward jet for 0.84 < r < 1 and 0 < θ < π/4 turns to flow radially inward as the
negative values of vr1 for 0.7 < r < 1 in figure 6(c). It then turns to flow downward as
the negative values of vz1 for 0.68 < r < 0.84 in figure 6(a), with the circuit completed
in z < 0. This circulation represents azimuthal vorticity inside the parallel layer, and
this vorticity has opposite directions for 0 < θ < π/4 and for π/4 < θ < π/2. Third, a
few percent of the upward jet for 0.84 < r < 1 and 0 < θ < π/4 turns to flow radially
into the core as the negative values of vr1 for r < 0.7 in figure 6(c). This flow turns to
cross the θ = π/4 plane as the negative values of vθ1 for r < 0.7 in figure 6(b), and
then flows radially outward to return to the parallel layer in π/4 < θ < π/2. This
circulation involves axial vorticity in the core.

Contours of T1 are plotted in figure 6(d ). There is no parallel layer here, confirming
the asymptotic result that the leading order of T1 is continuous across the parallel
layer. The net upward flow inside the parallel layer rejects heat into the core as it
rises to colder levels in the base-state temperature, and this heat rejection produces
T1 > 0 for 0 6 θ 6 π/4. The resultant positive buoyancy force inside the parallel layer
drives the upward jet. For π/4 6 θ 6 π/2, the net downward flow inside the parallel
layer must absorb heat from the core as it descends to hotter levels, thus producing
T1 < 0. The resultant negative buoyancy force inside the parallel layer drives the
downward jet. Most of the circuit between the upward and downward parallel-layer
jets is completed by large values of vθ1 near the electrically insulated wall at r = 1
where the wall blocks the radial electric current which would otherwise produce a
body force opposing this azimuthal flow.

For the parallel layer in the asymptotic solution for b = 1, γcr = 23.48183 and
m = 2, contours of vz1p are presented in figure 7. We have normalized the asymptotic
solution with A0 = 1. The values in figure 7 should be multiplied by 4.5 for comparison
to the values in figure 6(a). Clearly the shapes of the contours in figures 6(a) and
7 are the same. The radial scales also agree well. For example, the vz1p = 0 contour
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at ξ = −3.55 in figure 7 coincides perfectly with the vz1 = 0 contour at r = 0.84 in
figure 6(a) since r = 1 + Ha−1/2ξ. The contours of vθ1p agree well with the contours
for the larger negative values in figure 6(b), and the contours of T1c agree well with
the contours in figure 6(d ).

4. Conclusions
We have presented two new solutions for the Rayleigh–Bénard instability in a

vertical cylinder with a vertical magnetic field. The hybrid solution combines an
analytical solution for the Hartmann layers with a numerical solution for the rest
of the liquid domain. The hybrid solution is valid if the Hartmann layers are thin,
and it has an intrinsic error which is O(Ha−1). The predictions of the hybrid solution
agree very well with those of an extension of the fully numerical solution of Touihri
et al. (1999b) for Ha = 45 with b = 1 and for Ha = 80 with b = 0.5. The second
solution is an asymptotic solution for Ha� 1 which has an O(Ha−1/2) intrinsic error.
The asymptotic solution is an analytical solution, and the only numerical step is the
evaluation of the determinant of a coefficient matrix in the linear, algebraic equations
for the coefficients in one of the separation-of-variables solutions. The predictions of
the hybrid and asymptotic solutions agree well for Ha = 500. Since the asymptotic
solution is valid for all larger values of Ha, the combination of our hybrid solution,
our asymptotic solution and the fully numerical solution of Touihri et al. (1999b)
provide accurate results for values of Ha from zero to infinity.

Accurate predictions for higher values of Ha could be obtained from the fully
numerical or hybrid solutions by increasing the number of grid points in the axial
and radial directions. The very thorough grid-refinement study presented by Prange
et al. (1999) for the magnetic stabilization of the thermocapillary instability indicates
that a large increase in the number of grid points is required for even a small increase
in Ha for the fully numerical solution. Therefore it appears to be impractical to
extend the fully numerical solution to much higher values of Ha.

The asymptotic solution not only provides accurate results for Ha > 500, it also
provides physical insights into the characteristics of the instability with moderately
strong magnetic fields. We presented an interpretation of the perturbation variables for
the critical mode for Ha = 500, b = 1 and m = 2, but the asymptotic solution provides
equally good insights into other flows, such as the instability for Ha = 200, b = 0.5
and m = 4. For all moderately large values of Ha, the only significant convective heat
transfer is confined to the parallel layer, and the local upward or downward jet leads
to a heat rejection into the core or to a heat absorption from the core, respectively.
These heat transfers into or out of the core produce the perturbation temperature in
the core. The continuity of this core temperature across the parallel layer provides
the buoyancy forces to drive the upward and downward jets. Since the temperature
in the core is important in this coupling, the azimuthal scale of the perturbation must
remain comparable to the radial and axial dimensions of the core. Therefore m does
not increase much as Ha is increased, namely from 1 to 2 for b = 1 and from 0 to
5 for b = 0.5. This result contrasts with thermocapillary instability with a magnetic
field parallel to the free surface. There all perturbation variables are zero outside the
parallel layer, and the azimuthal wavelength of the perturbation is comparable to the
radial scale of the parallel layer, i.e. 2π/m = O(Ha−1/2) or m = O(Ha1/2).
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on a workstation donated by the International Business Machines Corporation.
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